350=24x^2+24x-6

Simple and best practice solution for 350=24x^2+24x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 350=24x^2+24x-6 equation:


Simplifying
350 = 24x2 + 24x + -6

Reorder the terms:
350 = -6 + 24x + 24x2

Solving
350 = -6 + 24x + 24x2

Solving for variable 'x'.

Combine like terms: 350 + 6 = 356
356 + -24x + -24x2 = -6 + 24x + 24x2 + 6 + -24x + -24x2

Reorder the terms:
356 + -24x + -24x2 = -6 + 6 + 24x + -24x + 24x2 + -24x2

Combine like terms: -6 + 6 = 0
356 + -24x + -24x2 = 0 + 24x + -24x + 24x2 + -24x2
356 + -24x + -24x2 = 24x + -24x + 24x2 + -24x2

Combine like terms: 24x + -24x = 0
356 + -24x + -24x2 = 0 + 24x2 + -24x2
356 + -24x + -24x2 = 24x2 + -24x2

Combine like terms: 24x2 + -24x2 = 0
356 + -24x + -24x2 = 0

Factor out the Greatest Common Factor (GCF), '4'.
4(89 + -6x + -6x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(89 + -6x + -6x2)' equal to zero and attempt to solve: Simplifying 89 + -6x + -6x2 = 0 Solving 89 + -6x + -6x2 = 0 Begin completing the square. Divide all terms by -6 the coefficient of the squared term: Divide each side by '-6'. -14.83333333 + x + x2 = 0 Move the constant term to the right: Add '14.83333333' to each side of the equation. -14.83333333 + x + 14.83333333 + x2 = 0 + 14.83333333 Reorder the terms: -14.83333333 + 14.83333333 + x + x2 = 0 + 14.83333333 Combine like terms: -14.83333333 + 14.83333333 = 0.00000000 0.00000000 + x + x2 = 0 + 14.83333333 x + x2 = 0 + 14.83333333 Combine like terms: 0 + 14.83333333 = 14.83333333 x + x2 = 14.83333333 The x term is x. Take half its coefficient (0.5). Square it (0.25) and add it to both sides. Add '0.25' to each side of the equation. + 0.25 + x2 = 14.83333333 + 0.25 Combine like terms: + 0.25 = 1.25 1.25 + x2 = 14.83333333 + 0.25 Combine like terms: 14.83333333 + 0.25 = 15.08333333 1.25 + x2 = 15.08333333 Factor a perfect square on the left side: (x + 0.5)(x + 0.5) = 15.08333333 Calculate the square root of the right side: 3.883726732 Break this problem into two subproblems by setting (x + 0.5) equal to 3.883726732 and -3.883726732.

Subproblem 1

x + 0.5 = 3.883726732 Simplifying x + 0.5 = 3.883726732 Reorder the terms: 0.5 + x = 3.883726732 Solving 0.5 + x = 3.883726732 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = 3.883726732 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = 3.883726732 + -0.5 x = 3.883726732 + -0.5 Combine like terms: 3.883726732 + -0.5 = 3.383726732 x = 3.383726732 Simplifying x = 3.383726732

Subproblem 2

x + 0.5 = -3.883726732 Simplifying x + 0.5 = -3.883726732 Reorder the terms: 0.5 + x = -3.883726732 Solving 0.5 + x = -3.883726732 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.5' to each side of the equation. 0.5 + -0.5 + x = -3.883726732 + -0.5 Combine like terms: 0.5 + -0.5 = 0.0 0.0 + x = -3.883726732 + -0.5 x = -3.883726732 + -0.5 Combine like terms: -3.883726732 + -0.5 = -4.383726732 x = -4.383726732 Simplifying x = -4.383726732

Solution

The solution to the problem is based on the solutions from the subproblems. x = {3.383726732, -4.383726732}

Solution

x = {3.383726732, -4.383726732}

See similar equations:

| x(x+1)(8x-9)=0 | | 49-3v=4v | | -2.2x-31.36=4-6.4-5.96 | | 2x^2+x^3+x^2=2x^7 | | x+y+9x=y | | x+x+10+48=180 | | -5(x+7)=34 | | 6x+8x-2=26 | | 2x^2+x^3+x^2= | | 4k+(-4)=8 | | 6(2y+10)=5(y+5) | | 89-45=90 | | -P^2-119=0 | | 5x-3(x-2)=-3+4x-5 | | 0.01(14)+0.05(22-14)=0.54 | | x-4+9=2 | | (3a+2)(2a+5)= | | ln(x-4)+ln(x-2)=ln(3) | | 3465.25/2300x100 | | 15=-3-(n+10) | | 32+(x+9)+(2x-8)=90 | | 4y=24x+16 | | Y=7x^2-7x-5 | | 34.65/1.5 | | 7x+11=4x-7 | | 360/x=6 | | 7(g+17)= | | x+14=3x-20 | | 2x^8-4*x^4-16=0 | | -5x+45=15 | | 7(x-6)+8(x-5)= | | -12+8y=12 |

Equations solver categories